题目内容
【题目】如图,四边形 ABCD 是矩形,把矩形沿直线 BD 拆叠,点 C 落在点 E 处,连接 DE, DE 与 AD 交于点 M.
(1)证明四边形 ABDE 是等腰梯形;
(2)写出等腰梯形 ABDE 与矩形 ABCD 的面积大小关系,并证明你的结论.
【答案】(1)答案见解析;(2)等腰梯形ABDE小于矩形ABCD的面积
【解析】
(1)结合图形证△AMB≌△EMD,再结合图形的折叠关系可得答案.
(2) 由AE<BD,以及平行线间的距离相等,可得由于以及 可得结论.
证明:(1)∵四边形ABCD是矩形,
∴AD=BE,AB=ED,AD∥BC.
∴△ADB≌△DBC≌△EDB,∠EBD=∠DBC,∠ADB=∠EBD.
∴DM=BM,AM=EM.
∴△AMB≌△EMD.
∴AB=DE.AM=EM,
∴∠EAM=∠AEM,
∵DM=BM,
∴∠BDM=∠MBD,
又∵∠AME=∠BMD,
∴∠EAD=∠MDB,
∴AE∥BD.
∵AE≠BD,
∴四边形ABDE是等腰梯形.
(2)∵
∵
∵AE<BD,
∴
∴
∴ 等腰梯形ABDE小于矩形ABCD的面积.
练习册系列答案
相关题目