题目内容
【题目】如图,以ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数的图象交BC于D,连接AD,则四边形AOCD的面积是 .
【答案】9
【解析】解:∵四边形ABCD是平行四边形,A、C的坐标分别是(2,4)、(3,0),
∴点B的坐标为:(5,4),
把点A(2,4)代入反比例函数y=得:k=8,
∴反比例函数的解析式为:y=;
设直线BC的解析式为:y=kx+b,
把点B(5,4),C(3,0)代入得:,
解得:k=2,b=﹣6,
∴直线BC的解析式为:y=2x﹣6,
解方程组 得:
,或 (不合题意,舍去),
∴点D的坐标为:(4,2),
即D为BC的中点,
∴△ABD的面积=平行四边形ABCD的面积,
∴四边形AOCD的面积=平行四边形ABCO的面积﹣△ABD的面积=3×4﹣×3×4=9;
所以答案是:9.
【考点精析】通过灵活运用比例系数k的几何意义和平行四边形的性质,掌握几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分即可以解答此题.
【题目】某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).
表1
一班 | 5 | 8 | 8 | 9 | 8 | 10 | 10 | 8 | 5 | 5 |
二班 | 10 | 6 | 6 | 9 | 10 | 4 | 5 | 7 | 10 | 8 |
表2
班级 | 平均数 | 中位数 | 众数 | 方差 | 及格率 | 优秀率 |
一班 | 7.6 | 8 | a | 3.82 | 70% | 30% |
二班 | b | 7.5 | 10 | 4.94 | 80% | 40% |
(1)在表2中,a= ,b= ;
(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;
(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.
【题目】在天水市汉字听写大赛中,10名学生得分情况如表
人数 | 3 | 4 | 2 | 1 |
分数 | 80 | 85 | 90 | 95 |
那么这10名学生所得分数的中位数和众数分别是( )
A.85和82.5
B.85.5和85
C.85和85
D.85.5和80