题目内容
【题目】如图,射线交一圆于点,,射线交该圆于点,,且 .
(1)判断与的数量关系.(不必证明)
(2)利用尺规作图,分别作线段的垂直平分线与的平分线,两线交于点(保留作图痕迹,不写作法),求证:平分.
【答案】(1)AC=AE;(2)图见解析,证明见解析
【解析】
(1)作OP⊥AM,OQ⊥AN于Q,连接AO,BO,DO.证△APO≌△AQO,由BC=DE,得CP=EQ后得证;
(2)同AC=AE得∠ECM=∠CEN,由CE=EF得∠FCE=∠FEC=∠MCE=∠CEN得证.
证明:(1)作OP⊥AM于P,OQ⊥AN于Q,连接AO,BO,DO.
∵,
∴BC=DE,
∴BP=DQ,
又∵OB=OD,
∴△OBP≌△ODQ,
∴OP=OQ.
∴BP=DQ=CP=EQ.
直角三角形APO和AQO中,
AO=AO,OP=OQ,
∴△APO≌△AQO.
∴AP=AQ.
∵CP=EQ,
∴AC=AE.
(2)作图如图所示
证明:∵AC=AE,∴,
∴, 由于AF是CE的垂直平分线,且CF平分,
∴CF=EF.
∴
因此EF平分
练习册系列答案
相关题目