题目内容

【题目】如图,在四边形ABCD中,AD∥BC,∠BAD=90°,对角线BD⊥DC.

(1)求证:△ABD∽△DCB;
(2)如果AD=4,BC=9,求BD的长.

【答案】
(1)证明:△ABD与△DCB相似,理由如下:

∵AD∥BC,

∴∠ADB=∠DBC.

∵BD⊥DC,

∴∠BDC=90°.

∵∠BAD=90°,

∴∠BAD=∠BDC.

∴△ABD∽△DCB.


(2)解:∵△ABD∽△DCB,

∴BD2=ADCB.

∵AD=4,BC=9,

∴BD=6.


【解析】(1)根据平行线的性质两直线平行内错角相等,再根据两角对应相等两三角形相似;(2)根据相似三角形的性质得到比例,求出BD的长.
【考点精析】本题主要考查了相似三角形的判定与性质的相关知识点,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网