题目内容

【题目】多项式6x3﹣11x2+x+4可分解为

【答案】(x﹣1)(3x﹣4)(2x+1)
【解析】解:6x3﹣11x2+x+4,
=6x3﹣6x2﹣5x2+x+4,
=6x2(x﹣1)﹣(5x2﹣x﹣4),
=6x2(x﹣1)﹣(x﹣1)(5x+4),
=(x﹣1)(6x2﹣5x﹣4),
=(x﹣1)(3x﹣4)(2x+1).
将﹣11x2分为﹣6x2和﹣5x2两部分,原式可化为6x3﹣6x2﹣5x2+x+4,6x3﹣6x2可提公因式,分为一组,﹣5x2+x+4可用十字相乘法分解,分为一组.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网