题目内容

【题目】某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:

(1)求出y与x之间的函数关系式;

(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?

【答案】(1y=﹣x+180;(2y=x﹣100)(﹣x+180)售价定为140/件时,每天最大利润W=1600元.

【解析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于kb的关系式,求出k、b的值即可;

(2)把每天的利润W与销售单价x之间的函数关系式化为二次函数顶点式的形式,由此关系式即可得出结论.

解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知,

,解得

故y与x的函数关系式为y=﹣x+180;

(2)∵y=﹣x+180,

∴W=(x﹣100)y=(x﹣100)(﹣x+180)

=﹣x2+280x﹣18000

=﹣(x﹣140)2+1600,

∵a=﹣1<0,

∴当x=140时,W最大=1600,

∴售价定为140元/件时,每天最大利润W=1600元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网