题目内容

【题目】如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为( )
(1)DC=3OG; (2)OG= BC; ( 3)OGE是等边三角形; ( 4)SAOE= S矩形ABCD

A.1
B.2
C.3
D.4

【答案】C
【解析】解:∵EF⊥AC,点G是AE中点, ∴OG=AG=GE= AE, ∵∠AOG=30°, ∴∠OAG=∠AOG=30°, ∠GOE=90°-∠AOG=90°-30°=60°, ∴△OGE是等边三角形,故(3)正确; 设AE=2a,则OE=OG=a, 由勾股定理得,AO= = = a, ∵O为AC中点, ∴AC=2AO=2 a, ∴BC= AC= ×2 a= a, 在Rt△ABC中,由勾股定理得,AB= =3a, ∵四边形ABCD是矩形, ∴CD=AB=3a, ∴DC=3OG,故(1)正确; ∵OG=a, BC= a, ∴OG≠ BC,故(2)错误; ∵SAOE= · a·2a= S矩形ABCD=3a =3 a2∴SAOE= S矩形ABCD , 故(4)正确; 综上所述,结论正确是(1)(3)(4)共3个. 故选:C.
【考点精析】根据题目的已知条件,利用等边三角形的判定和勾股定理的概念的相关知识可以得到问题的答案,需要掌握三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网