题目内容
【题目】某超市销售一种水果,迸价为每箱40元,规定售价不低于进价.现在的售价为每箱72元,每月可销售60箱.经市场调查发现:若这种牛奶的售价每降低2元,则每月的销量将增加10箱,设每箱水果降价x元(x为偶数),每月的销量为y箱.
(1)写出y与x之间的函数关系式和自变量x的取值范围.
(2)若该超市在销售过程中每月需支出其他费用500元,则如何定价才能使每月销售水果的利润最大?最大利润是多少元?
【答案】(1)y=60+5x,(0≤x≤32,且x为偶数);(2)售价为62元时,每月销售水果的利润最大,最大利润是1920元.
【解析】
(1)根据价格每降低2元,平均每月多销售10箱,由每箱降价元,多卖,据此可以列出函数关系式;
(2)由利润=(售价成本)×销售量每月其他支出列出函数关系式,求出最大值.
解:(1)根据题意知y=60+5x,(0≤x≤32,且x为偶数);
(2)设每月销售水果的利润为w,
则w=(72﹣x﹣40)(5x+60)﹣500
=﹣5x2+100x+1420
=﹣5(x﹣10)2+1920,
当x=10时,w取得最大值,最大值为1920元,
答:当售价为62元时,每月销售水果的利润最大,最大利润是1920元.
练习册系列答案
相关题目
【题目】小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折(折扣相同),其余两次均按标价购买.三次购买商品A、B的数量和费用如下表:
购买商品A的数量/个 | 购买商品B的数量/个 | 购买总费用/元 | |
第一次购物 | 6 | 5 | 1140 |
第二次购物 | 3 | 7 | 1110 |
第三次购物 | 9 | 8 | 1062 |
(1)小林以折扣价购买商品A、B是第 次购物;
(2)求出商品A、B的标价;
(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?