题目内容
【题目】如图,Rt△ABC中,∠C=90°,AC=,tanB=.半径为2的⊙C, 分别交AC、BC于点D、E,得到 .
(1)求证:AB为⊙C的切线;
(2)求图中阴影部分的面积.
【答案】(1)证明见解析(2)5-π
【解析】分析:(1)过点C作CF⊥AB于点F。根据三角函数的计算公式和勾股定理可得BC、AB的长,根据三角形的面积公式可求得CF的长,因为CF的长等于圆的半径长,利用切线的判定即可证明。(2)根据三角形的面积公式、扇形的面积公式以及阴影部分的面积等于△ABC的面积与扇形DCE的面积之差,即可求得阴影部分的面积.
详解:(1)证明:过C作CF⊥AB于F,
∵在Rt△ABC中,∠C=90°,AC=,tanB==,
∴BC=2,
由勾股定理得:AB==5,
∵△ACB的面积S==,
∴CF==2,
∴CF为⊙C的半径,
∵CF⊥AB,
∴AB为⊙C的切线;
(2)解:图中阴影部分的面积=S△ACB﹣S扇形DCE=××2﹣=5﹣π.
练习册系列答案
相关题目
【题目】小华同学经过调查,了解到某客车租赁公司有,两种型号的客车,并得到了下表中的信息.
车型 | 型 | 型 |
座位 | 45座 | 60座 |
信息 | 每辆型客车一天的租金比型客车少100元 | |
5辆型客车和2辆型客车一天的租金为1600元 |
(1)求每辆型和型客车每天的租金各是多少元?
(2)小华所在学校准备组织七年级全体学生外出一天进行研学活动,小华同学设计了下面甲乙两种租车方案:
方案甲:只租用型客车,但有一辆客车会空出30个座位.
方案乙:只租用型客车,刚好坐满,且比方案甲少用两辆客车.
求小华所在学校七年级学生的总人数.
(3)如果从节省费用的角度考虑,是否还有其他租车方案?如果有,请直接写出一种租车方案;如果没有,请说明理由。