题目内容
【题目】△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S1(如图1);在余下的Rt△ADE和Rt△BDF中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S2(如图2);继续操作下去…;第2019次剪取后,余下的所有小三角形的面积之和是_____.
【答案】
【解析】
根据题意,可求得S△AED+S△DBF=S正方形ECFD=S1=1,同理可得规律:Sn即是第n次剪取后剩余三角形面积和,根据此规律求解即可答案.
∵四边形ECFD是正方形,
∴DE=EC=CF=DF,∠AED=∠DFB=90°,
∵△ABC是等腰直角三角形,
∴∠A=∠B=45°,
∴AE=DE=EC=DF=BF=EC=CF,
∵AC=BC=2,
∴DE=DF=1,
∴S△AED+S△DBF=S正方形ECFD=S1=1;
同理:S2即是第二次剪取后剩余三角形面积和,
Sn即是第n次剪取后剩余三角形面积和,
∴第一次剪取后剩余三角形面积和为:2﹣S1=1=S1,
第二次剪取后剩余三角形面积和为:S1﹣S2=1﹣==S2,
第三次剪取后剩余三角形面积和为:S2﹣S3=﹣==S3,
…
第n次剪取后剩余三角形面积和为:Sn﹣1﹣Sn=Sn=.则s2019=;
故答案为:.
练习册系列答案
相关题目