题目内容
【题目】如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣ ,直线l的解析式为y=x.
(1)求二次函数的解析式;
(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;
(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.
【答案】
(1)
解:由题意抛物线的顶点坐标为(2,﹣ ),设抛物线的解析式为y=a(x﹣2)2﹣ ,
把(0,0)代入得到a= ,
∴抛物线的解析式为y= (x﹣2)2﹣ ,即y= x2﹣ x
(2)
解:如图1中,设E(m,0),则C(m, m2﹣ m),B(﹣ m2+ m,0),
∵E′在抛物线上,
∴E、B关于对称轴对称,
∴ =2,
解得m=1或6(舍弃),
∴B(3,0),C(1,﹣2),
∴直线l′的解析式为y=x﹣3
(3)
解:如图2中,
①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).
②当N′=N′B′时,设P(m,m﹣3),
则有(m﹣ )2+(m﹣3﹣ )2=(3 )2,
解得m= 或 ,
∴P2( , ),P3( , ).
综上所述,满足条件的点P坐标为(0,﹣3)或( , )或( , )
【解析】(1)由题意抛物线的顶点坐标为(2,﹣ ),设抛物线的解析式为y=a(x﹣2)2﹣ ,把(0,0)代入得到a= ,即可解决问题;(2)如图1中,设E(m,0),则C(m, m2﹣ m),B(﹣ m2+ m,0),由E、B关于对称轴对称,可得 =2,由此即可解决问题;(3)分两种情形求解即可①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),列出方程解方程即可;
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
【题目】某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:
成绩/分 | 36 | 37 | 38 | 39 | 40 |
人数/人 | 1 | 2 | 1 | 4 | 2 |
下列说法正确的是( )
A.这10名同学体育成绩的中位数为38分
B.这10名同学体育成绩的平均数为38分
C.这10名同学体育成绩的众数为39分
D.这10名同学体育成绩的方差为2