题目内容
【题目】阅读材料:
在平面直角坐标系xOy中,点P(x0 , y0)到直线Ax+By+C=0的距离公式为:d= .
例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.
解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,
∴点P0(0,0)到直线4x+3y﹣3=0的距离为d= = .
根据以上材料,解决下列问题:
(1)点P1(3,4)到直线y=﹣ x+ 的距离为;
(2)已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣ x+b相切,求实数b的值;
(3)如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.
【答案】
(1)4
(2)
解:∵⊙C与直线y=﹣ x+b相切,⊙C的半径为1,
∴C(2,1)到直线3x+4y﹣b=0的距离d=1,
∴ =1,
解得b=5或15
(3)
解:点C(2,1)到直线3x+4y+5=0的距离d= =3,
∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,
∴S△ABP的最大值= ×2×4=4,S△ABP的最小值= ×2×2=2
【解析】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d= =4,
所以答案是4.
【考点精析】通过灵活运用一次函数的性质和一次函数的图象和性质,掌握一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小;一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远即可以解答此题.