题目内容
【题目】2017年5月,举世瞩目的“一带一路”国际合作高峰论坛在北京举行.为了让学生更深刻地了解这一普惠世界的中国创举,某校组织八年级甲班和乙班的学生开展“一带一路”知识竞赛活动.现场决赛时,甲班和乙班分别选5名同学参加比赛,成绩如图所示:
(1)根据上图将计算结果填入下表:
平均数 | 中位数 | 众数 | 方差 | |
甲班 | 8.5 | 8.5 | _____ | _____ |
乙班 | 8.5 | ______ | 10 | 1.6 |
(2)你认为哪个班的成绩较好?为什么?
【答案】88.50.7
【解析】
(1)由条形图分别得出甲、乙班5位同学的成绩,再根据众数、中位数和方差定义求解可得;
(2)分别从平均数、众数、中位数和方差的角度分析可得.
(1)甲班5位同学的成绩分别为8.5、7.5、8、8.5、10,
∴甲班5位同学成绩的众数为8.5、方差为×[(8.5-8.5)2×2+(7.5-8.5)2+(8-8.5)2+(10-8.5)2]=0.7,
乙班5位同学的成绩分别为:7、10、10、7.5、8,
∴乙班5位同学成绩的中位数为8,
补全表格如下:
平均数 | 中位数 | 众数 | 方差 | |
甲班 | 8.5 | 8.5 | 8.5 | 0.7 |
乙班 | 8.5 | 8 | 10 | 1.6 |
(2)从平均数看,甲、乙班成绩一样;
从中位数看,甲班成绩好;
从众数看,乙班成绩好;
从方差看,甲班成绩稳定.
【题目】在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.
(1)请根据下列图形,填写表中空格:
正多边形边数 | 3 | 4 | 5 | 6 | … |
正多边形每个内角的度数 | … |
(2)如图,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形;
(3)正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.
【题目】某校九年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
1号 | 2号 | 3号 | 4号 | 5号 | 总分 | |
甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
乙班 | 89 | 100 | 95 | 119 | 97 | 500 |
统计发现两班总分相等,此时有同学建议,可以通过考查数据中的其他信息作为参考,请你解答下列问题:
(1)计算两班的优秀率;
(2)求两班比赛数据的中位数;
(3)估计两班比赛数据的方差哪一个小?
(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班?简述理由.