题目内容
在Rt△ABC中,∠C=90°,,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B' 正好落在AB上,A'B'与AC相交于点D,那么 .
.
试题分析:作CH⊥AB于H,先在Rt△ABC中,根据余弦的定义得到cosB=,设BC=3x,则AB=4x,再根据勾股定理计算出AC=4x,在Rt△HBC中,根据余弦的定义可计算出BH=x,接着根据旋转的性质得CA′=CA=4x,CB’=CB,∠A′=∠A,所以根据等腰三角形的性质有B′H=BH=x,则AB′=x,然后证明△ADB′∽△A′DC,再利用相似比可计算出B′D与DC的比值.
作CH⊥AB于H,如图,
在Rt△ABC中,∠C=90°,cosB=,设BC=3x,则AB=5x,
AC==4x,
在Rt△HBC中,cosB=,而BC=3x,
∴BH=x,
∵Rt△ABC绕顶点C旋转后得到Rt△A′B′C,其中点B′正好落在AB上,
∴CA′=CA=4x,CB′=CB,∠A′=∠A,
∵CH⊥BB′,
∴B′H=BH=x,
∴AB′=AB-B′H-BH=x,
∵∠ADB′=∠A′DC,∠A′=∠A,
∴△ADB′∽△A′DC,
∴AB’:A′C ="B’D:DC" ,即x:4x ="B′D:DC" ,
∴ .
故答案为.
练习册系列答案
相关题目