题目内容
【题目】如图,△OAB中,OA=OB=10,∠AOB=70°,以点O为圆心,6为半径的优弧 分别交OA、OB于点M,N.
(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转70°得OP′.求证:AP=BP′;
(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;
(3)设点Q在优弧 上,当△AOQ的面积最大时,直接写出∠BOQ的度数.
【答案】
(1)证明:如图1,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,
∠BOP′=∠POP′+∠BOP=80°+∠BOP,
∴∠AOP=∠BOP′,
∵在△AOP和△BOP′中
,
∴△AOP≌△BOP′(SAS),
∴AP=BP′
(2)解:如图1,连接OT,过点T作TH⊥OA于点H,
∵AT是⊙O的切线,
∴∠ATO=90°,
∴AT= = =8,
∵ ×OA×TH= ×AT×OT,
即 ×10×TH= ×8×6,
解得:TH= ,即点T到OA的距离为
(3)解:如图2,当OQ⊥OA时,△AOQ的面积最大;
理由:∵OQ⊥OA,
∴QO是△AOQ中最长的高,则△AOQ的面积最大,
∴∠BOQ=∠AOQ+∠AOB=90°+70°=160°,
当Q点在优弧 右侧上,
∵OQ⊥OA,
∴QO是△AOQ中最长的高,则△AOQ的面积最大,
∴∠BOQ=∠AOQ﹣∠AOB=90°﹣70°=20°,
综上所述:当∠BOQ的度数为20°或160°时,△AOQ的面积最大
【解析】(1)首先根据已知得出∠AOP=∠BOP′,进而得出△AOP≌△BOP′,即可得出答案;(2)利用切线的性质得出∠ATO=90°,再利用勾股定理求出AT的长,进而得出TH的长即可得出答案;(3)当OQ⊥OA时,△AOQ面积最大,且左右两半弧上各存在一点分别求出即可.