题目内容
【题目】如图,四边形ABCD中,AB∥CD,点O在BD上,以O为圆心的圆恰好经过A、B、C三点,⊙O交BD于E,交AD于F,且,连接OA、OF.
(1)求证:四边形ABCD是菱形;
(2)若∠AOF=3∠FOE,求∠ABC的度数.
【答案】(1)见解析(2)80°
【解析】
(1)先根据圆的性质得:∠CBD=∠ABD,由平行线的性质得:∠ABD=∠CDB,根据直径和等式的性质得:,由一组对边平行且相等可得四边形ABCD是平行四边形,由AB=BC可得结论;
(2)先设∠FOE=x,则∠AOF=3x,可求出∠ABC=4x,根据∠ABC+∠BAD=180°,列方程得:4x+2x+(180-3x)=180,求出x的值,则可得∠ABC的度数.
(1)证明:∵,
∴∠CBD=∠ABD,
∵CD∥AB,
∴∠ABD=∠CDB,
∴∠CBD=∠CDB,
∴CB=CD,
∵BE是⊙O的直径,
∴,
∴,
∴AB=BC=CD,
∵CD∥AB,
∴四边形ABCD是菱形;
(2)∵∠AOF=3∠FOE,
设∠FOE=x,则∠AOF=3x,
∠AOD=∠FOE+∠AOF=4x,
∵OA=OF,
∴∠OAF=∠OFA=(180-3x)°,
∵OA=OB,
∴∠OAB=∠OBA=2x,
∴∠ABC=4x,
∵BC∥AD,
∴∠ABC+∠BAD=180°,
∴4x+2x+(180-3x)=180,
x=20°,
∴∠ABC=80°.
练习册系列答案
相关题目