题目内容
如图,已知△ABC的角平分线BD与∠ACB的外角平分线交于D点,DE∥BC交于E,交AC于F,求证:EF=BE-CF.
证明:∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵DE∥BC,
∴∠EDB=∠CBD,
∴∠ABD=∠EDB,
∴DE=BE,
同理DF=CF,
∵EF=DE-DF,
∴EF=BE-CF.
∴∠ABD=∠CBD,
∵DE∥BC,
∴∠EDB=∠CBD,
∴∠ABD=∠EDB,
∴DE=BE,
同理DF=CF,
∵EF=DE-DF,
∴EF=BE-CF.
练习册系列答案
相关题目