题目内容

【题目】如图,四边形ABCD是边长为a的正方形,点G、E分别是边AB、BC的中点,∠AEF=90°,且EF交正方形外角的平方线CF于点F.
(1)证明:△AGE≌△ECF;
(2)求△AEF的面积.

【答案】
(1)证明∵G,E分别是正方形ABCD的边AB,BC的中点,

∴AG=GB=BE=EC,且∠AGE=180°﹣45°=135°;

又∵CF是∠DCH的平分线,

∴∠DCF=∠FCH=45°,

∠ECF=90°+45°=135°;

在△AGE和△ECF中,

∴△AGE≌△ECF


(2)解:由△AGE≌△ECF,得AE=EF;

又∵∠AEF=90°,

∴△AEF是等腰直角三角形;

∵AB=a,E为BC中点,

∴BE= BC= AB= a,

根据勾股定理得:AE= = a,

∴SAEF= a2


【解析】(1)根据正方形的性质,易证得AG=EC,∠AGE=∠ECF=135°;再加上(1)得出的相等角,可由ASA判定两个三角形全等;(2)在Rt△ABE中,根据勾股定理易求得AE2;由(2)的全等三角形知:AE=EF,即△AEF是等腰Rt△,因此其面积为AE2的一半,由此得解.
【考点精析】掌握正方形的性质是解答本题的根本,需要知道正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网