题目内容
【题目】如图,四边形ABCD是边长为a的正方形,点G、E分别是边AB、BC的中点,∠AEF=90°,且EF交正方形外角的平方线CF于点F.
(1)证明:△AGE≌△ECF;
(2)求△AEF的面积.
【答案】
(1)证明∵G,E分别是正方形ABCD的边AB,BC的中点,
∴AG=GB=BE=EC,且∠AGE=180°﹣45°=135°;
又∵CF是∠DCH的平分线,
∴∠DCF=∠FCH=45°,
∠ECF=90°+45°=135°;
在△AGE和△ECF中,
;
∴△AGE≌△ECF
(2)解:由△AGE≌△ECF,得AE=EF;
又∵∠AEF=90°,
∴△AEF是等腰直角三角形;
∵AB=a,E为BC中点,
∴BE= BC= AB= a,
根据勾股定理得:AE= = a,
∴S△AEF= a2
【解析】(1)根据正方形的性质,易证得AG=EC,∠AGE=∠ECF=135°;再加上(1)得出的相等角,可由ASA判定两个三角形全等;(2)在Rt△ABE中,根据勾股定理易求得AE2;由(2)的全等三角形知:AE=EF,即△AEF是等腰Rt△,因此其面积为AE2的一半,由此得解.
【考点精析】掌握正方形的性质是解答本题的根本,需要知道正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
【题目】某面粉加工厂加工的面粉,用每袋可装10g面粉的袋子装了200袋经过称重,质量超过标准质量10kg的用正数表示,质量低于标准质量10kg的用负数表示,结果记录如下
与标准质量的偏差(kg) | ﹣1.5 | ﹣1 | ﹣0.5 | 0 | 0.5 | 1 | 2 |
袋数(袋) | 40 | 30 | 10 | 25 | 40 | 20 | 35 |
(1)求这批面粉的总质量;
(2)如果100kg小麦加工80kg面粉,那么这批面粉是由多少千克小麦加工的?