题目内容
【题目】某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,灯的质量越好.如:二级产品好于一级产品).若出售这批护眼灯,一级产品每台可获利润21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表所示:
等级(x级) | 一级 | 二级 | 三级 | … |
生产量(y台/天) | 78 | 76 | 74 | … |
(1)已知护眼灯每天的生产量y(台)是等级x(级)的一次函数,请直接写出y与x之间的函数关系式:;
(2)若工厂将当日所生产的护眼灯全部售出,工厂应生产哪一等级的护眼灯,才能获得最大利润?最大利润是多少?
【答案】
(1)y=﹣2x+80
(2)
解:设工厂生产x等级的护眼灯时,获得的利润为w元.
由题意,有w=[21+1(x﹣1)]y
=[21+1(x﹣1)](﹣2x+80)
=﹣2(x﹣10)2+1800,
所以当x=10时,可获得最大利润1800元.
故若工厂将当日所生产的护眼灯全部售出,工厂应生产十级的护眼灯时,能获得最大利润,最大利润是1800元
【解析】解:(1)由题意,设y=kx+b.
把(1,78)、(2,76)代入,
得 ,解得 ,
∴y与x之间的函数关系式为y=﹣2x+80.
所以答案是y=﹣2x+80;
【分 析】(1)由于护眼灯每天的生产量y(台)是等级x(级)的一次函数,所以可设y=kx+b,再把(1,78)、(2,76)代入,运用待定系数法即可求 出y与x之间的函数关系式;(2)设工厂生产x等级的护眼灯时,获得的利润为w元.由于等级提高时,带来每台护眼灯利润的提高,同时销售量下降.而x等级 时,每台护眼灯的利润为[21+1(x﹣1)]元,销售量为y元,根据:利润=每台护眼灯的利润×销售量,列出w与x的函数关系式,再根据函数的性质即可 求出最大利润.