题目内容
【题目】如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,B的距离相等,求点P对应的数x的值.
(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.
(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?
【答案】(1)x=1;(2) x=-3或x=5;(3) 30.
【解析】
(1)根据题意可得4-x=x-(-2),解出x的值;
(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;
(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.
(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.
【题目】某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,灯的质量越好.如:二级产品好于一级产品).若出售这批护眼灯,一级产品每台可获利润21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表所示:
等级(x级) | 一级 | 二级 | 三级 | … |
生产量(y台/天) | 78 | 76 | 74 | … |
(1)已知护眼灯每天的生产量y(台)是等级x(级)的一次函数,请直接写出y与x之间的函数关系式:;
(2)若工厂将当日所生产的护眼灯全部售出,工厂应生产哪一等级的护眼灯,才能获得最大利润?最大利润是多少?