题目内容
【题目】九年级某班同学在毕业晚会中进行抽奖活动,在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.
(1)请用列表或画树形图的方法(只选其中一样),表示两次摸出小球上的标号的所有结果;
(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.
【答案】
(1)解:列表得:
1 | 2 | 3 | |
1 | (1,1) | (2,1) | (3,1) |
2 | (1,2) | (2,2) | (3,2) |
3 | (1,3) | (2,3) | (3,3) |
所有等可能的情况数有9种
(2)解:可能出现的结果共9种,它们出现的可能性相同,
两次摸出小球标号相同的情况共3种,分别为(1,1);(2,2);(3,3),
则P= =
【解析】(1)列表得出所有等可能的情况数即可;(2)找出两次摸出小球标号相同的情况数,即可求出中奖的概率.
【考点精析】通过灵活运用列表法与树状图法,掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率即可以解答此题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目