题目内容

【题目】如图,已知ABCD,现将一直角三角形PMN放入图中,其中∠P=90°,PMAB于点EPNCD于点F.

(1)当△PMN所放位置如图①所示时,求出∠PFD与∠AEM的数量关系;

(2)当△PMN所放位置如图②所示时,求证:∠PFD-∠AEM=90°;

(3)(2)的条件下,若MNCD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.

【答案】(1)∠PFD+∠AEM=90°;(2)见解析;(3)∠N=45°.

【解析】

(1)如图,由平行线的性质得出PFD=∠NPH,∠AEM=∠HPM,即可得出结果;
(2)PNAB于点G由平行线的性质得出PFD=∠PGB,再由三角形的外角等于与它不相邻的两个内角的和即可得出结果;
(3)由三角形的外角等于与它不相邻的两个内角的和求出∠PFD=90°+∠PEB=120°,再由平行线的性质得出NFO=120°,然后由三角形的内角和定理即可得出结果

解:(1)如图,过点PPHAB.

ABCD

PHCD

∴∠PFD=∠NPH,∠AEM=∠HPM.

∵∠MPN=90°,

∴∠NPH+∠HPM=90°,

∴∠PFD+∠AEM=90°.

(2)证明:设PNAB于点G.

ABCD

∴∠PFD=∠PGB.

∵∠PGB-∠PEB=90°,∠PEB=∠AEM

∴∠PFD-∠AEM=90°.

(3)(2)得,∠PFD=90°+∠PEB=120°,

∴∠NFO=120°,

∴∠N=180°-∠DON-∠NFO=45°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网