题目内容
【题目】如图,二次函数y=ax2+bx+c的图象过点(-1,0)和点(3,0),则下列说法正确的是( )
A.B.C.D.
【答案】C
【解析】
利用抛物线开口方向得到a>0,利用对称轴在y轴的右侧得到b<0,利用抛物线与x轴的交点在x轴下方得到c<0,则可对A进行判断;利用当x=1时,y<0可对B进行判断;利用抛物线的对称性得到抛物线的对称轴为直线x=-=1,则可对C进行判断;根据抛物线与x轴的交点个数对D进行判断.
解:∵抛物线开口向上,
∴a>0,
∵对称轴在y轴的右侧,
∴a和b异号,
∴b<0,
∵抛物线与x轴的交点在x轴下方,
∴c<0,
∴bc>0,所以A选项错误;
∵当x=1时,y<0,
∴a+b+c<0,所以B选项错误;
∵抛物线经过点(-1,0)和点(3,0),
∴抛物线的对称轴为直线x=1,
即-=1,
∴2a+b=0,所以C选项正确;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,
即4ac<b2,所以D选项错误.
故选:C.
练习册系列答案
相关题目