题目内容
【题目】如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.
(1)AD与BC平行吗?请说明理由;
(2)AB与EF的位置关系如何?为什么?
(3)若AF平分∠BAD,试说明:∠E+∠F=90°
【答案】(1)AD∥BC,见解析;(2)AB∥EF,见解析;(3)见解析.
【解析】
(1)欲证明AD∥BC,只要证明∠ADF=∠BCF即可;
(2)结论:AB∥EF,只要证明∠E=∠ABE 即可;
(3)只要证明∠OAB+∠OBA=90°即可解决问题;
解:(1)结论:AD∥BC.
理由如下:
∵∠ADE+∠ADF=180°,
∠ADE+∠BCF=180°,
∴∠ADF=∠BCF,
∴AD∥BC;
(2)结论:AB与EF的位置关系是:AB∥EF.
理由:
∵BE平分∠ABC,
∴∠ABE= ∠ABC.
又∵∠ABC=2∠E,
即∠E=∠ABC,
∴∠E=∠ABE.
∴AB∥EF;
(3)∵AD∥BC,
∴∠DAB+∠CBA=180°,
∵∠OAB=DAB,∠OBA=∠CBA,
∴∠OAB+∠OBA=90°,
∴∠EOF=∠AOB=90°,
∴∠E+∠F=90°.
练习册系列答案
相关题目