题目内容
【题目】如图,已知A,B,C是数轴上三点,点C表示的数为6,BC=4,AB=12.
(1)写出数轴上点A,B表示的数.
(2)动点P,Q分别从A,C同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动.若M为AP的中点,点N在线段CQ上,且CN=CQ,设运动时间为ts(t>0).
①写出数轴上点M,N表示的数(用含t的式子表示).
②t为何值时,原点O恰为线段PQ的中点?
【答案】(1)A点表示-10;B点表示2;(2)①点M表示的数是-10+3t;点N表示的数是6-t;②t=.
【解析】
(1)根据数轴上两点间的距离即可求出A、B表示的数;(2)①根据距离=速度×时间可得AP=6t,CQ=3t,根据中点性质可得AM=3t,根据CN=CQ可得CN=t,根据线段的和差关系即可得答案;②根据中点定义可得OP=OQ,再根据数轴的性质解答即可.
(1)∵C表示的数为6,BC=4,
∴OB=6-4=2,
∴B点表示2,
∵AB=12,
∴AO=12-2=10,
∴A点表示-10;
(2)①由题意得:AP=6t,CQ=3t,
∵M为AP中点,
∴AM=AP=3t,
∴在数轴上点M表示的数是-10+3t,
∵点N在CQ上,CN=CQ,
∴CN=t.
∴在数轴上点N表示的数是6-t.
②∵原点O恰为线段PQ的中点,
∴OP=OQ,
∵OP=-10+6t,OQ=6-3t,
∴-10+6t与6-3t互为相反数,
∴-10+6t=-(6-3t),
解得:t=,
∴t=时,原点O恰为线段PQ的中点.
练习册系列答案
相关题目