题目内容
【题目】已知:如图,ABCD,延长边AB到点E,使BE=AB,连接DE、BD和EC,设DE交BC于点O,∠BOD=2∠A,求证:四边形BECD是矩形.
【答案】证明见解析.
【解析】
根据平行四边形的判定与性质得到四边形BECD为平行四边形,再由已知条件证出BC=ED,即可得出结论.
证明:在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,
则BE∥CD.
又∵AB=BE,
∴BE=DC,
∴四边形BECD为平行四边形,
∴OD=OE,OC=OB.
∵四边形ABCD为平行四边形,
∴∠A=∠BCD,即∠A=∠OCD.
又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,
∴∠OCD=∠ODC,
∴OC=OD,
∴OC+OB=OD+OE,即BC=ED,
∴平行四边形BECD为矩形.
练习册系列答案
相关题目
【题目】下表为某个雨季水库管理员记录的水库一周内的水位变化情况,警戒水位为150m(上周末的水位刚好达到警戒水位).
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
增减/m | +1.2 | +0.4 | +0.8 | ﹣0.1 | +0.7 | ﹣0.7 | ﹣1.1 |
注:正数表示比前一天水位上升,负数表示比前一天水位下降.
(1)本周哪一天水位最高?有多少米?
(2)本周哪一天水位最低?有多少米?
(3)根据给出的数据,以警戒水位为0点,用折线统计图表示本周内该水库的水位情况.