题目内容

如图,矩形ABCD中,AB=CD=x,AD=BC=y,把它折叠起来,使顶点A与C重合,则折痕PQ的长度为(  )
A.
y
x
x2+y2
B.
x
y
x2+y2
C.
y
x
2x2+y2
D.
x
y
x2+2y2

∵A,C两点关于PQ对称,所以AO=CO,
∵AC⊥QP,从而∠AOP=∠QOC=90°,
∵四边形ABCD是矩形,
∴ABDC,
∴∠APQ=∠PQC.
∴△APO≌△CQO,
∴CQ=AP,
由PQ⊥AC且平分AC,可知AQ=CQ.
∴四边形AQCP是菱形,
设AP=a,则AQ=a,DQ=x-a,
在Rt△ADQ中,利用勾股定理可知:a2=y2+(x-a)2
∴整理得:2ax=x2+y2
解得a=
x2+y2
2x

菱形AQCP的面积为:
1
2
PQ•AC=CQ•AD,
1
2
PQ×
x2+y2
=
x2+y2
2x
×y,
整理得:PQ×
x2+y2
=
x2+y2
x
×y,
解得:PQ=
y
x
x2+y2

故选:A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网