题目内容
【题目】如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.
(1)求证:△ADP∽△ABQ;
(2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;
(3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.
【答案】(1)证明见解析;(2)y=x2-20x+125(0<x<20)..(3)a>12.5.
【解析】
试题分析:(1)由对应两角相等,证明两个三角形相似;
(2)如解答图所示,过点M作MN⊥QC于点N,由此构造直角三角形BMN,利用勾股定理求出y与x的函数关系式,这是一个二次函数,求出其最小值;
(3)如解答图所示,当点M落在矩形ABCD外部时,须满足的条件是“BE>MN”.分别求出BE与MN的表达式,列不等式求解,即可求出a的取值范围.
试题解析:(1)证明:∵∠QAP=∠BAD=90°,
∴∠QAB=∠PAD,
又∵∠ABQ=∠ADP=90°,
∴△ADP∽△ABQ.
(2)解:∵△ADP∽△ABQ,
∴,
即,解得QB=2x.
∵DP=x,CD=AB=20,
∴PC=CD-DP=20-x.
如图所示,过点M作MN⊥QC于点N,
∵MN⊥QC,CD⊥QC,点M为PQ中点,
∴点N为QC中点,MN为中位线,
∴MN=PC=(20-x)=10-x,
BN=QC-BC=(BC+QB)-BC=(10+2x)-10=x-5.
在Rt△BMN中,由勾股定理得:BM2=MN2+BN2=(10-x)2+(x-5)2=x2-20x+125,
∴y=x2-20x+125(0<x<20).
∵y=x2-20x+125=(x-8)2+45,
∴当x=8即DP=8时,y取得最小值为45,BM的最小值为.
(3)解:设PQ与AB交于点E.
如图所示,点M落在矩形ABCD外部,须满足的条件是BE>MN.
∵△ADP∽△ABQ,
∴,,解得QB=
∵AB∥CD,
∴△QBE∽△QCP,
∴,即,解得BE=.
∵MN为中位线,
∴MN=PC=(a-8).
∵BE>MN,
∴(a-8),解得a>12.5.
∴当点M落在矩形ABCD外部时,a的取值范围为:a>12.5.