题目内容
【题目】如图,中,,,,点从点出发沿路径向终点运动,终点为点,点从点出发沿路径向终点运动,终点为点,点和分别以每秒和的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过和作于,于.设运动时间为秒,要使以点,,为顶点的三角形与以点,,为顶点的三角形全等,则的值为______.
【答案】或7或8
【解析】
易证∠MEC=∠CFN,∠MCE=∠CNF.只需MC=NC,就可得到△MEC与△CFN全等,然后只需根据点M和点N不同位置进行分类讨论即可解决问题.
①当0≤t<4时,点M在AC上,点N在BC上,如图①,
此时有AM=2t,BN=3t,AC=8,BC=15.
当MC=NC即82t=153t时全等,
解得t=7,不合题意舍去;
②当4≤t<5时,点M在BC上,点N也在BC上,如图②,
若MC=NC,则点M与点N重合,即2t8=153t,
解得t=;
当5≤t<时,点M在BC上,点N在AC上,如图③,
当MC=NC即2t8=3t15时全等,
解得t=7;
④当≤t<时,点N停在点A处,点M在BC上,如图④,
当MC=NC即2t8=8,
解得t=8;
综上所述:当t等于或7或8秒时,以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等.
故答案为:或7或8.
练习册系列答案
相关题目