题目内容
【题目】如图,O为矩形ABCD对角线AC,BD的交点,AB=9,AD=18,M,N是直线BC上的动点,且MN=3,则OM+ON最小值=___.
【答案】3.
【解析】
通过作图得到平行四边形MNQP,由平行四边形MNQP的性质得到OM+ON=QN+ON,从而得到当O,N,Q在同一直线上时,OM+ON最小,即OM+ON=OQ;由轴对称的性质得到OP长度,最后根据勾股定理得到OQ的值,从而得到答案.
如图所示,作点O关于BC的对称点P,连接PM,将MP沿着MN的方向平移MN长的距离,得到NQ,连接PQ,
则四边形MNQP是平行四边形,
∴MN=PQ=3,PM=NQ=MO,
∴OM+ON=QN+ON,
当O,N,Q在同一直线上时,OM+ON的最小值等于OQ长,
连接PO,交BC于E,
由轴对称的性质,可得BC垂直平分OP,
又∵矩形ABCD中,OB=OC,
∴E是BC的中点,
∴OE是△ABC的中位线,
∴OE=AB=4.5,
∴OP=2×4.5=9,
又∵PQ∥MN,
∴PQ⊥OP,
∴Rt△OPQ中,OQ===3,
∴OM+ON的最小值是3,
故答案为:3.
练习册系列答案
相关题目
【题目】旺财水果店每天都会进一些草莓销售,在一周销售过程中他发现每天的销售量y(单位:千克)会随售价x(单位:元/千克)而变化,部分数据记录如表
售价x(单位:元/千克) | 30 | 25 | 20 |
每天销售量y(单位:千克) | 5 | 55 | 105 |
如果已知草莓每天销量y与售价x(30.5>x>14)满足一次函数关系.
(1)请根据表格中数据求出这个一次函数关系式;
(2)如果进价为14元/千克,请判断售价分别定为20元/千克和25元/千克,哪天的销售利润更高?