题目内容
【题目】如图1,在平面直角坐标系中,直线与抛物线交于两点,其中,.该抛物线与轴交于点,与轴交于另一点.
(1)求的值及该抛物线的解析式;
(2)如图2.若点为线段上的一动点(不与重合).分别以、为斜边,在直线的同侧作等腰直角△和等腰直角△,连接,试确定△面积最大时点的坐标.
(3)如图3.连接、,在线段上是否存在点,使得以为顶点的三角形与△相似,若存在,请直接写出点的坐标;若不存在,请说明理由.
【答案】(1);(2)当,即时,最大,此时,所以;(3)存在点坐标为或.
【解析】(1)把A与B坐标代入一次函数解析式求出m与n的值,确定出A与B坐标,代入二次函数解析式求出b与c的值即可;
(2)由等腰直角△APM和等腰直角△DPN,得到∠MPN为直角,由两直角边乘积的一半表示出三角形MPN面积,利用二次函数性质确定出三角形面积最大时P的坐标即可;
(3)存在,分两种情况,根据相似得比例,求出AQ的长,利用两点间的距离公式求出Q坐标即可.
(1)把A(m,0),B(4,n)代入y=x﹣1得:m=1,n=3,∴A(1,0),B(4,3).
∵y=﹣x2+bx+c经过点A与点B,∴,解得:,则二次函数解析式为y=﹣x2+6x﹣5;
(2)如图2,△APM与△DPN都为等腰直角三角形,∴∠APM=∠DPN=45°,∴∠MPN=90°,∴△MPN为直角三角形,令﹣x2+6x﹣5=0,得到x=1或x=5,∴D(5,0),即DP=5﹣1=4,设AP=m,则有DP=4﹣m,∴PM=m,PN=(4﹣m),∴S△MPN=PMPN=×m×(4﹣m)=﹣m2﹣m=﹣(m﹣2)2+1,∴当m=2,即AP=2时,S△MPN最大,此时OP=3,即P(3,0);
(3)存在,易得直线CD解析式为y=x﹣5,设Q(x,x﹣5),由题意得:∠BAD=∠ADC=45°,分两种情况讨论:
①当△ABD∽△DAQ时,=,即=,解得:AQ=,由两点间的距离公式得:(x﹣1)2+(x﹣5)2=,解得:x=,此时Q(,﹣);
②当△ABD∽△DQA时,=1,即AQ=,∴(x﹣1)2+(x﹣5)2=10,解得:x=2,此时Q(2,﹣3).
综上,点Q的坐标为(2,﹣3)或(,﹣).