题目内容
【题目】如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.
(1)求证:△ABE≌△DAF;
(2)若AF=1,四边形ABED的面积为6,求EF的长.
【答案】(1)证明见解析;(2)EF=2.
【解析】试题分析:(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF,即可根据AAS证明△ABE≌△DAF;
(2)设EF=x,则AE=DF=x+1,根据四边形ABED的面积为6,列出方程即可解决问题;
试题解析:解:(1)∵四边形ABCD是正方形,∴AB=AD,∵DF⊥AG,BE⊥AG,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,∵∠BAE=∠ADF,∠AEB=∠DFA,AB=AD,∴△ABE≌△DAF(AAS).
(2)设EF=x,则AE=DF=x+1,由题意2××(x+1)×1+×x×(x+1)=6,解得x=2或﹣5(舍弃),∴EF=2.
练习册系列答案
相关题目