题目内容
【题目】如图,在平面直角坐标系中,正方形的顶点的坐标为,点在轴正半轴上,点在第三象限的双曲线上,过点作轴交双曲线于点,连接,则的面积为__________.
【答案】7
【解析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.
如图,过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,
设D(x,),
∵四边形ABCD是正方形,
∴AD=CD=BC,∠ADC=∠DCB=90°,
易得△AGD≌△DHC≌△CMB,
∴AG=DH=-x-1,
∴DG=BM,
∴1-=-1-x-,
x=-2,
∴D(-2,-3),CH=DG=BM=1-=4,
∵AG=DH=-1-x=1,
∴点E的纵坐标为-4,
当y=-4时,x=-,
∴E(-,-4),
∴EH=2-=,
∴CE=CH-HE=4-=,
∴S△CEB=CEBM=××4=7.
故答案为:7.
练习册系列答案
相关题目