题目内容
【题目】如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D,若BC=6,sin∠BAC=,则AC=_____,CD=_____.
【答案】3
【解析】
连接BO延长BO交⊙O于H,连接CH,连接AO延长AO交BC于T.设OD=x,AD=y.再解直角三角形得到BH和CH,再由三角形的中位线定理求出OT,然后再利用勾股定理求出AC,最后根据相似三角形的性质构建方程组并解答即可.
解:连接BO延长BO交⊙O于H,连接CH,连接AO延长AO交BC于T.设OD=x,AD=y.
∵BH是直径,
∴∠BCH=90°,
∵∠BAC=∠BHC,
∴sin∠BAC=sin∠BHC=
∵BC=6,
∴BH=10,CH==8,
∵AB=AC,
∴,
∴AT⊥BC,
∴BT=CT=3,
∵BO=OH,BT=TC,
∴OT=CH=4,
∴AT=AO+OT=5+4=9,
∴AC=
∵AB=AC,AT⊥BC,
∴∠DAO=∠CAO,
∵OA=OC,
∴∠CAO=∠OCA,
∴∠DAO=∠OCA,
∵∠ADO=∠CDA,
∴△DAO∽△DCA,
∴,
∴ ,
解得x= ,
∴CD=OD+OC=+5=
,
故答案为3,
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】如图,Rt△ABC中,∠C = 90°, P是CB边上一动点,连接AP,作PQ⊥AP交AB于Q . 已知AC = 3cm,BC = 6cm,设PC的长度为xcm,BQ的长度为ycm .
小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.
下面是小青同学的探究过程,请补充完整:
(1) 按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(说明:补全表格时,相关数据保留一位小数)
m的值约为多少cm;
(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x ,y),画出该函数的图象;
(3)结合画出的函数图象,解决问题:
①当y > 2时,写出对应的x的取值范围;
②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?(直接写结果)