题目内容
【题目】(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.
①线段DB和DG的数量关系是 ;
②写出线段BE,BF和DB之间的数量关系.
(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.
①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;
②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.
【答案】(1)①DB=DG;②BF+BE=BD;(2)①BF+BE=BD,理由见解析;②GM=.
【解析】
(1)①根据旋转的性质解答即可;
②根据正方形的性质和全等三角形的判定和性质解答即可;
(2)①根据菱形的性质和全等三角形的判定和性质解答即可;
②作辅助线,计算BD和BF的长,根据平行线分线段成比例定理可得BM的长,根据线段的差可得结论.
解:(1)①DB=DG,
理由是:
∵∠DBE绕点B逆时针旋转90°,如图1,
由旋转可知,∠BDE=∠FDG,∠BDG=90°,
∵四边形ABCD是正方形,
∴∠CBD=45°,
∴∠G=45°,
∴∠G=∠CBD=45°,
∴DB=DG;
故答案为:DB=DG;
②BF+BE=BD,理由如下:
由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG,
∴△FDG≌△EDB(ASA),
∴BE=FG,
∴BF+FG=BF+BE=BC+CG,
Rt△DCG中,∵∠G=∠CDG=45°,
∴CD=CG=CB,
∵DG=BD=BC,
即BF+BE=2BC=BD;
(2)①如图2,BF+BE=BD,
理由如下:在菱形ABCD中,∠ADB=∠CDB=∠ADC=×60°=30°,
由旋转120°得∠EDF=∠BDG=120°,∠EDB=∠FDG,
在△DBG中,∠G=180°﹣120°﹣30°=30°,
∴∠DBG=∠G=30°,
∴DB=DG,
∴△EDB≌△FDG(ASA),
∴BE=FG,
∴BF+BE=BF+FG=BG,
过点D作DM⊥BG于点M,如图2,
∵BD=DG,
∴BG=2BM,
在Rt△BMD中,∠DBM=30°,
∴BD=2DM.
设DM=a,则BD=2a,
BM=a,
∴BG=2a,
∴=,
∴BG=BD,
∴BF+BE=BG=BD;
②过点A作AN⊥BD于N,过D作DP⊥BG于P,如图3,
Rt△ABN中,∠ABN=30°,AB=2,
∴AN=1,BN=,
∴BD=2BN=2,
∵DC∥BE,
∴=,
∵CM+BM=2,
∴BM=,
Rt△BDP中,∠DBP=30°,BD=2,
∴BP=3,
由旋转得:BD=BF,
∴BF=2BP=6,
∴GM=BG﹣BM=6+1﹣=