题目内容
【题目】如图1,的所对边分别是,且,若满足,则称为奇异三角形,例如等边三角形就是奇异三角形.
(1)若,判断是否为奇异三角形,并说明理由;
(2)若,,求的长;
(3)如图2,在奇异三角形中,,点是边上的中点,连结,将分割成2个三角形,其中是奇异三角形,是以为底的等腰三角形,求的长.
【答案】(1)是,理由见解析;(2);(3)
【解析】
(1)根据奇异三角形的概念直接进行判断即可.
(2)根据勾股定理以及奇异三角形的概念直接列式进行计算即可.
(3)根据△ABC是奇异三角形,且b=2,得到,由题知:AD=CD=1,且BC=BD=a,根据△ADB是奇异三角形,则或,分别求解即可.
(1)∵, ,
∴,
∴
即△ABC是奇异三角形.
(2)∵∠C=90°,
∴
∵
∴
,
∴
解得:.
(3)∵△ABC是奇异三角形,且b=2
∴
由题知:AD=CD=1,BC=BD=a
∵△ADB是奇异三角形,且,
∴或
当时,
当时,与矛盾,不合题意.
练习册系列答案
相关题目