题目内容

如图,点B、C、D都在⊙O上,过点C作ACBD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=6
3
cm.
(1)求证:AC是⊙O的切线;
(2)求⊙O的半径长;
(3)求由弦CD、BD与弧BC所围成的阴影部分的面积(结果保留π).
(1)证明:连接CO.
∵∠CDB=∠OBD=30°,
∴∠BOC=60°.(1分)
∵ACBD,
∴∠A=∠OBD=30°.
∴∠ACO=90°.
∴AC为⊙O切线.(2分)

(2)∵∠ACO=90°,ACBD,
∴∠BEO=∠ACO=90°.
∴DE=BE=
1
2
BD=3
3
.(3分)
在Rt△BEO中,sin∠O=sin60°=
BE
OB

3
2
=
3
3
OB
.∴OB=6.
即⊙O的半径长为6cm.(4分)

(3)∵∠CDB=∠OBD=30°,
又∵∠CED=∠BEO,BE=ED,∴△CDE≌△OBE.
S=S扇OBC=
60π×62
360
=6π
(cm2)(5分)
答:阴影部分的面积为6πcm2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网