题目内容

如图,已知AB是⊙O的直径,且AB为6,过B点作⊙O的切线CB与⊙O相切于点B,在半圆AB上有一点D使∠ABD=30°,BD的中点为E,连接OE并延长OE与BC交于点C,连接CD.
(1)求证:CD是⊙O的切线.
(2)四边形ABCD的周长是多少?
(1)证明:连接OD,
∵OE是BD的中点且BO=DO,
∴OE⊥BD,
∴CE⊥BD,
∵BE=DE,
∴BC=DC,
∵OB=OD,OC=OC,
∴△OBC≌△ODC,
∵BC是⊙O的切线,
∴∠OBC=90°,
∴∠ODC=90°,
∴CD是⊙O的切线;

(2)∵BC是⊙O的切线,
∴∠OBC=90°,
∵∠ABD=30°,
∴∠DBC=60°,
∵BC=CD,
∴∠DBC=∠BDC=60°,
∴△BCD是等边三角形,
∴BC=BD=CD,
∵AB是直径,
∴∠ADB=90°,
∵∠ABD=30°,AB=6,
∴AD=
1
2
AB=
1
2
×=3,BD=
AB2-AD2
=
62-32
=3
3

∴四边形ABCD的周长为:3
3
+3
3
+3+6=9+6
3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网