题目内容
【题目】阅读理解:
若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的妙点.
例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的妙点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的妙点,但点D是(B,A)的妙点.
知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.
(1)数 所表示的点是(M,N)的妙点;
(2)如图3,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发向左运动,到达点A停止.P点运动多少个单位时,P、A和B中恰有一个点为其余两点的妙点?
【答案】(1)2或10;(2)见解析.
【解析】
(1) 设所求数为x, 根据优点的定义分妙点在M、N之间和妙点在点N右边,列出方程解方程即可;
(2)根据妙点的定义可知分两种情况:①P为(A, B) 的妙点; ②P为 (B,A) 的妙点;③B为 (A, P) 的妙点. A为(B,P)的妙点设点P表示的数为y,根据妙点的定义列出方程, 进而得出的值.
解:(1)设所求数为x,由题意得
x﹣(﹣2)=2(4﹣x),
解得x=2;
或x+2=2(x﹣4),
解得x=10.
故数2或10所表示的点是【M,N】的妙点;
故答案为:2或10.
(2)设点P表示的数为y,分四种情况:
①P是【A,B】的妙点.
由题意,得y﹣(﹣40)=2(20﹣y),
解得y=0,
20﹣0=20;
②P是【B,A】的妙点.
由题意,得20﹣y=2[y﹣(﹣40)],
解得y=﹣20,
20﹣(﹣20)=40;
③B是【A,P】的妙点.
由题意,得20﹣(﹣40)=2(20﹣y),
解得y=﹣10,
20﹣(﹣10)=30;
④A为【B,P】的妙点,
由题意得20﹣(﹣40)=2[y﹣(﹣40)]
y=﹣10,
20﹣(﹣10)=30.
综上可知,当P点运动20或40或30个单位时,P、A和B中恰有一个点为其余两点的妙点.