题目内容
【题目】如图,△ABC中,∠ACB=90°,以AC为边在△ABC外作等边三角形ACD,过点D作AC的垂线,垂足为F,与AB相交于点E,连接CE.
(1)证明:AE=CE=BE;
(2)若DA⊥AB,BC=6,P是直线DE上的一点.则当P在何处时,PB+PC最小,并求出此时PB+PC的值.
【答案】(1)详见解析;(2)当点P与点E共点时,PB+PC的值最小,最小值为12.
【解析】
(1)根据等边三角形“三线合一”的性质证得DE垂直平分AC;然后由等腰三角形的判定知AE=CE,根据等边对等角、直角三角形的两个锐角互余的性质以及等量代换求得∠BCE=∠B;最后根据等角对等边证得CE=BE,所以AE=CE=BE;
(2)由(1)知,DE垂直平分AC,故PC=PA;由等量代换知PB+PC=PB+PA;根据两点之间线段最短可知,当点P、B、A在同一直线上最小,所以点P在E处时最小.
解:(1)∵△ADC是等边三角形,DF⊥AC,
∴DF垂直平分线段AC,
∴AE=EC, ∴∠ACE=∠CAE, ∵∠ACB=90°,
∴∠ACE+∠BCE=90°=∠CAE+∠B=90°,
∴∠BCE=∠B, ∴CE=EB, ∴AE=CE=BE.
(2)连接PA,PB,PC.
∵DA⊥AB, ∴∠DAB=90° ,∵∠DAC=60°,
∴∠CAB=30°, ∴∠B=60°,
∴BC=AE=EB=CE=6. ∴AB=12,
∵DE垂直平分AC, ∴PC=AP, ∴PB+PC=PB+PA,
∴当PB+PC最小时,也就是PB+PA最小,即P,B,A共线时最小,
∴当点P与点E共点时,PB+PC的值最小,最小值为12.
练习册系列答案
相关题目