题目内容
【题目】如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB为直径作⊙O,分别交边AC、BC于点E、点F
(1)求证:AD是⊙O的切线;
(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与围成的阴影部分的面积S.
【答案】
(1)
证明:∵△ABC为等边三角形,
∴AC=BC,
又∵AC=CD,
∴AC=BC=CD,
∴△ABD为直角三角形,
∴AB⊥AD,
∵AB为直径,
∴AD是⊙O的切线;
(2)
解:连接OE,
∵OA=OE,∠BAC=60°,
∴△OAE是等边三角形,
∴∠AOE=60°,
∵CB=BA,OA=OB,
∴CO⊥AB,
∴∠AOC=90°,
∴∠EOC=30°,
∵△ABC是边长为4的等边三角形,
∴AO=2,由勾股定理得:OC==2,
同理等边三角形AOE边AO上高是=,
S阴影=S△AOC﹣S等边△AOE﹣S扇形EOG==.
【解析】(1)求出∠DAC=30°,即可求出∠DAB=90°,根据切线的判定推出即可;
(2)连接OE,分别求出△AOE、△AOC,扇形OEG的面积,即可求出答案.
【考点精析】解答此题的关键在于理解切线的判定定理的相关知识,掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线,以及对扇形面积计算公式的理解,了解在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).
练习册系列答案
相关题目