题目内容

【题目】如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB为直径作⊙O,分别交边AC、BC于点E、点F

(1)求证:AD是⊙O的切线;
(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与围成的阴影部分的面积S.

【答案】
(1)

证明:∵△ABC为等边三角形,

∴AC=BC,

又∵AC=CD,

∴AC=BC=CD,

∴△ABD为直角三角形,

∴AB⊥AD,

∵AB为直径,

∴AD是⊙O的切线;


(2)

解:连接OE,

∵OA=OE,∠BAC=60°,

∴△OAE是等边三角形,

∴∠AOE=60°,

∵CB=BA,OA=OB,

∴CO⊥AB,

∴∠AOC=90°,

∴∠EOC=30°,

∵△ABC是边长为4的等边三角形,

∴AO=2,由勾股定理得:OC==2

同理等边三角形AOE边AO上高是=

S阴影=SAOC﹣S等边AOE﹣S扇形EOG==


【解析】(1)求出∠DAC=30°,即可求出∠DAB=90°,根据切线的判定推出即可;
(2)连接OE,分别求出△AOE、△AOC,扇形OEG的面积,即可求出答案.
【考点精析】解答此题的关键在于理解切线的判定定理的相关知识,掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线,以及对扇形面积计算公式的理解,了解在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网