题目内容
【题目】已知向量 ,向量 如图表示,则( )
A.?λ>0,使得
B.?λ>0,使得< , >=60°
C.?λ<0,使得< , >=30°
D.?λ>0,使得 为不为0的常数)
【答案】D
【解析】解:向量 ,向由图可得 =(5,5)﹣(1,2)=(4,3). 对于A,若 ,则(1,λ)(4,3)=0,解得 ,故错;
对于B,若< , >=60°,则 ,得11λ2+96λ+39=0,方程无解,故错;
对于C,若< , >=30°,则 ,得39λ2﹣96λ+11=0,方程无解,故错;
对于D,若 为不为0的常数),则(1,λ)=c(4,3),解得λ= ,故正确;
故选:D
【考点精析】掌握平面向量的基本定理及其意义是解答本题的根本,需要知道如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使.
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下
年龄 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65] |
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填2×2列联表,并判断是否95%的把握认为以45岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽2人. ①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
.