题目内容

【题目】如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.

(1)∠CBD=   

(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=   

(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.

【答案】(1)60°;(2)30°;(3)不变.

【解析】

(1)AM∥BN可得∠ABN=180°-∠A,再由BC、BD均为角平分线可求解;

(2)AM∥BN可得∠ACB=∠CBN,再由∠ACB=∠ABD可得∠ABC =∠DBN;

(3)AM∥BN可得∠APB=∠PBN,再由BD为角平分线即可解答.

解:(1)∵AM∥BN,

∴∠ABN=180°﹣∠A=120°,

∵BC,BD分别平分∠ABP∠PBN,

∴∠CBD=∠CBP+∠DBP=(∠ABP+∠PBN)=∠ABN=60°,

故答案为:60°.

(2)∵AM∥BN,

∴∠ACB=∠CBN,

∵∠ACB=∠ABD,

∴∠CBN=∠ABD,

∴∠ABC=∠ABD﹣∠CBD=∠CBN﹣∠CBD=∠DBN,

∴∠ABC=∠CBP=∠DBP=∠DBN,

∴∠ABC=∠ABN=30°,

故答案为:30°.

(3)不变.理由如下:

∵AM∥BN,

∴∠APB=∠PBN,∠ADB=∠DBN,

∵BD平分∠PBN,

∴∠ADB=∠DBN=∠PBN=∠APB,即∠APB:∠ADB=2:1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网