题目内容

【题目】已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).
(1)求抛物线的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.

【答案】
(1)解:∵抛物线与x轴交于点A(1,0),B(3,0),

可设抛物线解析式为y=a(x﹣1)(x﹣3),

把C(0,﹣3)代入得:3a=﹣3,

解得:a=﹣1,

故抛物线解析式为y=﹣(x﹣1)(x﹣3),

即y=﹣x2+4x﹣3,

∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,

∴顶点坐标(2,1)


(2)解:先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=﹣x2,平移后抛物线的顶点为(0,0)落在直线y=﹣x上(答案不唯一)
【解析】(1)利用交点式得出y=a(x﹣1)(x﹣3),进而得出a的值,再利用配方法求出顶点坐标即可;(2)根据左加右减得出抛物线的解析式为y=﹣x2 , 进而得出答案.
【考点精析】通过灵活运用二次函数图象的平移,掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网