题目内容
【题目】如图,lA,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.
(1)B出发时与A相距 千米.
(2)B出发后 小时与A相遇.
(3)B走了一段路后,自行车发生故障,进行 修理,所用的时间是 小时.
(4)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇,相遇点离B的出发点 千米.在图中表示出这个相遇点C.
(5)求出A行走的路程S与时间t的函数关系式.(写出过程)
【答案】(1)10;(2)3;(3)1小时;(4)见解析;(5)S=x+10..
【解析】
(1)从图上可看出B出发时与A相距10千米;
(2)从图象看出3小时时,两个图象相交,所以3小时时相遇;
(3)修理的时间就是路程不变的时间是1.5﹣0.5=1小时;
(4)不发生故障时,B的行走的路程和时间是正比例关系,设函数式为y=kx,过(0.5,7.5)点,求出函数式,从而求出相遇的时间,从而求出路程;
(5)S和t的函数关系是一次函数,设函数是为S=kx+t,过(0,10)和(3,22.5),从而可求出关系式.
解:(1)B出发时与A相距10千米.
(2)3小时时相遇.
(3)修理自行车的时间为:1.5﹣05=1小时.
(4)设B修车前的关系式为y=kx,过(0.5,7.5)点.
7.5=0.5k
k=15.
y=15x.
相遇时:S=y
x+10=15x
x=.
y=×15=.
小时时相遇,此时B走的路程是千米.
(5)设函数是为S=kx+t,且过(0,10)和(3,22.5),
,
解得.
∴S=x+10.
练习册系列答案
相关题目