题目内容
如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有______
①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长
;
④四边形AnBnCnDn的面积是
.
①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长
a+b |
4 |
④四边形AnBnCnDn的面积是
ab |
2n+1 |
①连接A1C1,B1D1.
∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四边形A1B1C1D1是平行四边形;
∵AC⊥BD,
∴四边形是A1B1C1D1矩形,
∴B1D1=A1C1
∴A2D2=C2D2=C2B2=B2A2(中位线定理),
∴四边形A2B2C2D2是菱形;
故本选项错误;
②由①知,四边形A2B2C2D2是菱形;
∴根据中位线定理知,四边形A4B4C4D4是菱形;
故本选项正确;
③根据中位线的性质易知,A5B5=
A3B3=
×
A1B1=
×
×
AC,B5C5=
B3C3=
×
B1C1=
×
×
BD,
∴四边形A5B5C5D5的周长是2×
(a+b)=
;
故本选项正确;
④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四边形ABCD=ab÷2;
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形AnBnCnDn的面积是
;
故本选项正确;
综上所述,②③④正确.
故答案为②③④.
∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四边形A1B1C1D1是平行四边形;
∵AC⊥BD,
∴四边形是A1B1C1D1矩形,
∴B1D1=A1C1
∴A2D2=C2D2=C2B2=B2A2(中位线定理),
∴四边形A2B2C2D2是菱形;
故本选项错误;
②由①知,四边形A2B2C2D2是菱形;
∴根据中位线定理知,四边形A4B4C4D4是菱形;
故本选项正确;
③根据中位线的性质易知,A5B5=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴四边形A5B5C5D5的周长是2×
1 |
8 |
a+b |
4 |
故本选项正确;
④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四边形ABCD=ab÷2;
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形AnBnCnDn的面积是
ab |
2n+1 |
故本选项正确;
综上所述,②③④正确.
故答案为②③④.
练习册系列答案
相关题目