题目内容
【题目】如图,在△ABC中,AB=AC=2,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E.
(1)当∠BDA=128°时,∠EDC= ,∠AED= ;
(2)线段DC的长度为何值时,△ABD≌△DCE?请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.
【答案】(1)16°;52°;(2)当DC=2时,△ABD≌△DCE,理由见解析;(3)当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形.
【解析】
(1)根据三角形内角和定理和等腰三角形的性质,得到答案;
(2)当DC=2时,利用∠DEC+∠EDC=144°,∠ADB+∠EDC=144°,得到∠ADB=∠DEC,根据AB=DC=2,证明△ABD≌△DCE;
(3)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.
(1)∵AB=AC,∴∠C=∠B=36°.
∵∠ADE=36°,∠BDA=128°.
∵∠EDC=180°﹣∠ADB﹣∠ADE=16°,
∴∠AED=∠EDC+∠C=16°+36°=52°.
故答案为:16°;52°;
(2)当DC=2时,△ABD≌△DCE,
理由:∵AB=2,DC=2,
∴AB=DC.
∵∠C=36°,
∴∠DEC+∠EDC=144°.
∵∠ADE=36°,
∴∠ADB+∠EDC=144°,
∴∠ADB=∠DEC,
在△ABD和△DCE中,
,
∴△ABD≌△DCE(AAS);
(3)当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形,
①当DA=DE时,∠DAE=∠DEA=72°,
∴∠BDA=∠DAE+∠C=70°+40°=108°;
②当AD=AE时,∠AED=∠ADE=36°,
∴∠DAE=108°,
此时,点D与点B重合,不合题意;
③当EA=ED时,∠EAD=∠ADE=36°,
∴∠BDA=∠EAD+∠C=36°+36°=72°;
综上所述:当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形.