题目内容
【题目】如图,已知二次函数的图象与x轴负半轴交于点A(-1,0),与y轴正半轴交与点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.
(1) 求一次函数解析式;
(2)求顶点P的坐标;
(3)平移直线AB使其过点P,如果点M在平移后的直线上,且,求点M坐标;
(4)设抛物线的对称轴交x轴与点E,联结AP交y轴与点D,若点Q、N分别为两线段PE、PD上的动点,联结QD、QN,请直接写出QD+QN的最小值.
【答案】(1) 一次函数的解析式为:y=3x+3
(2)顶点P的坐标为(1,4)
(3) M点的坐标为: )
(4)最小值为
【解析】
(1)根据抛物线的解析式即可得出B(0,3),根据OB=3OA,可求出OA的长,也就得出了A点的坐标,然后将A、B的坐标代入直线AB的解析式中,即可得出所求;
(2)将(1)得出的A点坐标代入抛物线的解析式中,可求出a的值,也就确定了抛物线的解析式进而可求出P点的坐标;
(3)易求出平移后的直线的解析式,可根据此解析式设出M点坐标(设横坐标,根据直线的解析式表示出纵坐标).然后过M作x轴的垂线设垂足为E,在构建的直角三角形AME中,可用M点的坐标表示出ME和AE的长,然后根据∠OAM的正切值求出M的坐标.(本题要分M在x轴上方和x轴下方两种情况求解.方法一样.)
(4)作点D关于直线x=1的对称点D′,过点D′作D′N⊥PD于点N,根据垂线段最短求出QD+QN的最小值.
(1)∵A(-1,0),∴OA=1
∵OB=3OA,∴B(0,3)
∴图象过A、B两点的一次函数的解析式为:y=3x+3
(2)∵二次函数的图象与x轴负半轴交与点A(-1,0),与y轴正半轴交与点B(0,3),
∴c=3,a=-1
∴二次函数的解析式为:
∴抛物线的顶点P(1,4)
(3)设平移后的直线的解析式为:
∵直线过P(1,4)
∴b=1
∴平移后的直线为
∵M在直线,且
设M(x,3x+1)
① 当点M在x轴上方时,有,∴
∴
②当点M在x轴下方时,有,∴
∴ )
(4)作点D关于直线x=1的对称点D’,过点D’作D’N⊥PD于点N
当-x2+2x+3=0时,解得,x=-1或x=3,
∴A(-1,0),
P点坐标为(1,4),
则可得PD解析式为:y=2x+2,
令x=0,可得y=2,
∴D(0,2),
∵D与D′关于直线x=1对称,
∴D′(2,2).
根据ND′⊥PD,
设ND′解析式为y=kx+b,
则k=-,即y=-x+b,
将D′(2,2)代入,得2=-×2+b,解得b=3,
可得函数解析式为y=-x+3,
将两函数解析式组成方程组得:,
解得,
故N(,
由两点间的距离公式:d=,
∴所求最小值为