题目内容

【题目】如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y= 和y= 的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:
=
②阴影部分面积是 (k1+k2);
③当∠AOC=90°时,|k1|=|k2|;
④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.

其中正确的结论是(把所有正确的结论的序号都填上).

【答案】①④
【解析】解:作AE⊥y轴于E,CF⊥y轴于F,如图,

∵四边形OABC是平行四边形,
∴SAOB=SCOB
∴AE=CF,
∴OM=ON,
∵SAOM= |k1|= OMAM,SCON= |k2|= ONCN,
= ,故①正确;
∵SAOM= |k1|,SCON= |k2|,
∴S阴影部分=SAOM+SCON= (|k1|+|k2|),
而k1>0,k2<0,
∴S阴影部分= (k1﹣k2),故②错误;
当∠AOC=90°,
∴四边形OABC是矩形,
∴不能确定OA与OC相等,
而OM=ON,
∴不能判断△AOM≌△CNO,
∴不能判断AM=CN,
∴不能确定|k1|=|k2|,故③错误;
若OABC是菱形,则OA=OC,
而OM=ON,
∴Rt△AOM≌Rt△CNO,
∴AM=CN,
∴|k1|=|k2|,
∴k1=﹣k2
∴两双曲线既关于x轴对称,也关于y轴对称,故④正确.
故答案为:①④.
作AE⊥y轴于点E,CF⊥y轴于点F,根据平行四边形的性质得SAOB=SCOB , 利用三角形面积公式得到AE=CF,则有OM=ON,再利用反比例函数k的几何意义和三角形面积公式得到SAOM= |k1|= OMAM,SCON= |k2|= ONCN,所以有 = ;由SAOM= |k1|,SCON= |k2|,得到S阴影部分=SAOM+SCON= (|k1|+|k2|)= (k1﹣k2);当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=﹣k2 , 根据反比例函数的性质得两双曲线既关于x轴对称,也关于y轴对称.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网