题目内容
【题目】如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
【答案】(1)AD=3,(2)当或时,以P、Q、C为顶点的三角形与△ADE相似(3)存在符合条件的M、N点,它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);
②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣)
【解析】
解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10。
由折叠的性质得,△BDC≌△EDC,∴∠B=∠DEC=90°,EC=BC=10,ED=BD。
由勾股定理易得EO=6。∴AE=10﹣6=4。
设AD=x,则BD=CD=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3。
∴AD=3。
∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),
∴,解得。∴抛物线的解析式为:。
(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,
由(1)可得AD=3,AE=4,DE=5。而CQ=t,EP=2t,∴PC=10﹣2t。
当∠PQC=∠DAE=90°,△ADE∽△QPC,
∴,即,解得。
当∠QPC=∠DAE=90°,△ADE∽△PQC,
∴,即,解得。
∴当或时,以P、Q、C为顶点的三角形与△ADE相似。
(3)存在符合条件的M、N点,它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);
②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣)。
(1)根据折叠图形的轴对称性,△CED≌△CBD,在Rt△CEO中求出OE的长,从而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式。
(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值。
(3)假设存在符合条件的M、N点,分两种情况讨论:
①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点。
由得抛物线顶点,则:M(4,)。
∵平行四边形的对角线互相平分,∴线段MN必被EC中点(4,3)平分,则N(4,﹣)。
②EC为平行四边形的边,则ECMN,
设N(4,m),则M(4﹣8,m+6)或M(4+8,m﹣6);
将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,
此时 N(4,﹣38)、M(﹣4,﹣32);
将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,
此时 N(4,﹣26)、M(12,﹣32)。
综上所述,存在符合条件的M、N点,它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);
②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣)。